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Abstract 

Because precipitation and net radiation in an atmospheric general circulation model 

(AGCM) are typically biased relative to observations, the simulated evaporative 

regime of a region may be biased, with consequent negative effects on the AGCM’s 

ability to translate an initialized soil moisture anomaly into an improved seasonal 

prediction. These potential problems are investigated through extensive offline anal- 

yses with the Mosaic land surface model (LSM). We first forced the LSM globally 

with a 15-year observations-based dataset. We then repeated the simulation after 

imposing a representative set of GCM climate biases onto the forcings - the ob- 

servational forcings were scaled so that their mean seasonal cycles matched those 

simulated by the NSIPP-1 (NASA Global Modeling and Assimilation Office) AGCM 

over the same period-The AGCM’s climate biases do indeed lead to significant biases 

in evaporative regime in certain regions, with the expected impacts on soil moisture 

memory timescales. Furthermore, the offline simulations suggest that the biased 

forcing in the AGCM should contribute to overestimated feedback in certain parts 

of North America - parts already identified in previous studies as having excessive 

feedback. The present study thus supports the notion that the reduction of cli- 

mate biases in the AGCM will lead to  more appropriate translations of soil moisture 

initialization into seasonal prediction skill. 
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1 Introduction 

Evaporation underlies land-atmosphere interaction. Evaporation (and associated 

variations in sensible heat flux) can effectively translate a soil moisture anomaly 

into an anomaly in atmospheric boundary layer conditions and, as a result, into 

a precipitation anomaly. The potential feedback of soil moisture on precipitation 

through evaporation has been the subject of several theoretical studies (e.g., En- 

tekhabi et al., 1991; Rodriguez-Iturbe et al., 1991) and observational studies (e.g., 

Namias, 1959; Barnston and Schickedanz, 1984; Findell and Eltahir, 1997; Salvucci 

et al., ‘2002). 

Model-based feedback studies are especially prevalent. In some ways, models 

(e-g., atmospheric general circulation models, or AGCMs) are particularly valuable 

tools for land-atmosphere feedback studies, since they offer two key advantages: (a) 

they provide complete suites of data covering all aspects of the land-atmosphere 

connection, including quantities (such as evaporation rates) that are difficult to 

measure in nature at large scales, and (b) the physics in a model can be artifically 

altered for sensitivity studies, allowing important mechanisms to be isolated and 

quantified. The impact of soil moisture on precipitation has been established in 

numerous atmospheric general circulation model (AGCM) studies (e.g., Koster et 

al., 2000, 2004; Liu and Avissar, 1999a,b; Dirmeyer, 2000, 2003; Dirmeyer et al., 

2003; Douville, 2003; Schubert et al., 2004). 

Intuitively, for such modeling studies to be effective, the background climate for 

an AGCM-based land-atmosphere interaction study should be as realistic as possible. 

Any free-running climate modeling system, however, is prone to biases. Gates et 

al. (1999) quantified the biases in 31 modeled climates as part of the Atmospheric 

I 



Model Intercomparison Project (AMIP). Gates et al. (1999) found that the models 

are generally too dry by more than 20% over large regions of the major precipitation 

zones, and are also too wet in the major dry zones in both DJF and JJA. Gates et al. 

(1999) also noted that climate biases may result from errors in the parameterization 

of clouds and their radiative interactions, in the parameterization of convection and 

precipitation, and in the representation of land surface and hydrologic processes. 

Simply put, climate biases in AGCMs are a fact of life. Given their presence, one 

may naturally ask how they affect the conclusions of model-based land-atmosphere 

feedback studies. We address this question in this paper. We focus in particular on 

the aspects of feedback relevant to seasonal prediction - relevant to the idea that 

knowledge of soil moisture anomalies at the beginning of a seasonal forecast period 

could result in increased skill in predicted precipitation. Koster and Suarez (2003) 

noted two separate elements to the impact of feedback on forecast skill: (a) the 

initialized anomaly must be 'remembered' well into the forecast period, and (b) the 

atmosphere (e.g. , precipitation-generating processes) must respond in a predictable 

way to  the soil moisture anomaly. The simulation of both elements, it turns out, 

is affected significantly by climate biases, particularly by the way the evaporation 

regime (the degree to which evaporation is controlled by soil moisture supply versus 

evaporation demand) is biased due to biases in simulated precipitation and incoming 

radiation. 

Section 2 provides needed background on evaporation regime and its relationship 

to soil moisture. Section 3 then shows how the climate biases in a representative 

AGCM can lead to biases in the simulated evaporation regime. Sections 4 and 5 

treat respectively the impact of evaporation regime biases on simulated soil moisture 
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memory and the response of precipitation to soil moisture anomalies. 

2 Background: Sensitivity of Evaporation to Soil 

Moisture in an AGCM 

The Land Surface Model (LSM) in a climate modeling system computes evapo- 

ration fluxes as part of the surface water and energy balance calculation using 

complex parameterizations typically employing numerous state variables and pa- 

rameters. Nevertheless, everything else being equal, evaporation intuitively should 

either increase monotonically with soil moisture or be insensitive to it. The full 

nature of the evaporation-soil moisture relationship is illustrated by a revisit to the 

idealized experiment of Mahanama and Koster, (2003), which investigated LSM be- 

haviors under a wide range of climates. In the version of the experiment examined 

here, we focus on a surface element having a baresoil fraction of 30%, loam soil, 

and moderate topography. Atmospheric forcing data for a 10,000-month perpetual 

July experiment was prepared using PILPS2c (Project for Intercomparison of Land- 

surface Parameterization Schemes Phase 2c, Wood et al., 1998) July-1979 forcings 

for the chosen location. A 10,000-month time series of monthly total precipitation 

was then randomly generated with values ranging from 15 to 630 mm and with a 

mean value of 180 mm. The monthly total precipitation was temporally disaggre- 

gated using the sub-monthly distribution of the PILPS-2c July-1979 precipitation 

for the same surface element. Then, the Mosaic LSM (Koster and Suarez 1996) 

was forced for 10,000 months using the prepared precipitation time series along 

with other PILPS2c atmospheric forcings (see Mahanama and Koster 2003, for full 
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details). The same experiment was repeated 4 times for four different vegetation 

biomes, evergreen broadleaf, deciduous broadleaf, needle leaf, and grassland. 

Scatter plots of evaporation efficiency ( E / h e t ,  where E is total evaporation 

(including transpiration, baresoil evaporation and interception loss) and het is net 

radiation) versus the degree of saturation of soil moisture (soil wetness) in the soil 

column (W) were made separately for the four experiments using daily output. 

The scatter in each plot is significant, but a simple binning procedure reveals an 

underlying relationship. Figure 1 shows this relationship for the four experiments. 

All four vegetation biomes show a common behavior: in drier situations, evaporation 

efficiency is strongly sensitive to soil moisture (measured as a wetness), whereas 

in wetter situations, the sensitivity is diminished - the slope ( c )  of the E/&,t 

versus soil moisture relationship is smaller. This behavior is not unexpected - in 

wetter climates, evaporation is controlled more by atmospheric demand than by soil 

moisture availability. Indeed, the basic shape of the curves in Fig. 1 is consistent 

with decades of understanding regarding soil moisture controlled versus atmosphere 

controlled evaporation regimes (e.g Manabe, 1969; Budyko, 1974; Eagleson, 1978). 

Note that an idealized experiment with highly diverse rainfall forcing was used 

to generate the curves in Figure 1 because the range of soil moistures achieved in a 

GCM simulation is typically limited to a small fraction of the total range. Consider 

the aforementioned relationship for grassland in Figure 2. Overlaid on the plot is 

a representative soil moisture range from a AGCM simulation - the range for a 

particular grid cell with intermediate soil moisture (mean soil moisture as a wetness 

= 0.45). The plotted range is equal to  twice the simulated standard deviation of 

soil moisture at  that point. 
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The ranges typically achieved are small enough, relative to the total possible 

range, that a single slope (e.g. that of the dashed line in the figure) can effectively 

characterize the local acting evaporation sensitivity to soil moisture at  the given 

point. Fitting a single slope to simulated pairs of evaporation efficiency and soil 

moisture values at  a grid cell has indeed proven an effective way of characterizing the 

behavior of a land surface model in a climatic regime. Koster and Milly (1997) used 

such fitted slopes to estimate annual evaporation rates across a variety of models. 

Koster and Suarez (2001) used such a slope to characterize soil moisture memory, and 

Koster et al., (2004) used it to characterize precipitation response to  soil moisture 

anomalies. In fact, these latter two studies together imply an interesting balance 

required for the slope in the context of precipitation prediction. For an initial soil 

moisture anomaly to affect a future precipitation rate, the effective slope cannot be 

too large, for then the soil moisture memory would be too low, and the slope cannot 

be too small, for then evaporation (and thus precipitation) would not be sensitive 

to the soil moisture anomaly. 

The ability of a single slope to characterize the sensitivity of evaporation effi- 

ciency to soil moisture and the relevance of this slope to key aspects of the prediction 

problem suggests an important question, alluded to  in the introduction. The ques- 

tion is illustrated in Figure 3: can a bias in the AGCM’s climate forcing lead to a 

bias in the acting slope (i.e. in the region’s evaporative regime), a bias that can in 

turn negatively affect the memory and feedback characteristics of the region relevant 

to prediction? This question is addressed quantitatively in the next three sections. 
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3 Effect of Climate Bias on Evaporative Regime 

To quantify the impact of climate bias on evaporative regime, a series of global off- 

line experiments was performed with the Mosaic land surface model. The Earth’s 

land surface was divided into a somewhat unusual grid, a set of 36,716 contiguous 

hydrologic catchments established from high-resolution (lkm) digital elevation data 

(Verdin and Verdin, 1999). The average size of these surface elements is 3,800 km2. 

We chose this grid for convenience and efficiency; it allowed us to take advantage 

of the experimental set-up already employed by Mahanama and Koster (2003). 

The results of the present analysis would invariably be the same if we employed a 

rectangular grid. Land cover and soil hydraulic properties for the surface elements 

were derived from a variety of recent global datasets: vegetation classification was 

derived using the lkm land cover characteristics of Belward et al. (1999), and soil 

texture classification came from the 5’x5’ global maps of Reynolds et al., (1999). 

Berg et al. (2004) merged European Center for Medium-Range Weather Forecast 

(ECMWF) global reanalyses of atmospheric forcings with observed fields of precip 

itation and radiation to produce a global, 0.5-degree, 6-hourly forcing dataset. In 

our earlier study, we interpolated this forcing (here after referred to as the “OBS 

forcing”) onto the catchment grid and then forced the Mosaic LSM over the period 

1979-93 (see Mahanama and Koster, 2003 for details). The Mosaic LSM produced, 

as a result, global fields of evaporation, net radiation, and soil moisture - enough 

information to determine, global fields of the sensitivity of the evaporation efficiency 

(E/Rnet) to soil moisture. The map of this sensitivity - the slope c - during the 

period June through August is shown in the top left panel of Figure 4. Again, 

throughout this paper, this slope is used to characterize the evaporative regime 
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of the land surface - high values of c imply that evaporation is moisture-limited, 

whereas low values imply that it is more atmosphere-limited. 

For the present study, we also repeated this offline experiment after imposing 

GCM climate biases on the OBS forcings - the total precipitation, convective pre- 

cipitation, downward shortwave radiation and downward longwave radiation in the 

OBS dataset were scaled so that their mean seasonal cycles matched those simulated 

by the NSIPP-1 atmospheric GCM over the same period (1979-93). 

The GCM climate biases are significant. Figure 5a shows the global distribu- 

tion of the imposed precipitation biases, determined by subtracting the average 

June-July-August (JJA) precipitation in the OBS dataset from that of the GCM’s 

climatology. Large positive biases (over-estimated precipitation in the GCM) can 

be seen in central America, over the Amazon basin, and in parts of southern Asia. 

Negative biases are mainly observed in other tropical land areas. Figure 5b shows 

the bias in the sum of downward solar and longwave radiation, again computed for 

JJA by substracting the OBS data values from the GCM climatology. The down- 

ward radiation forcing in the GCM exceeds that in the observations over much of 

the globe. Both precipitation and net radiation biases collectively determine the 

operating climate regime at any land element, so it is possible that the effects of a 

precipitation bias are being cancelled out by a net radiation bias at some locations. 

The dryness index (R&/XP, where X is the latent heat of vaporization and P is 

precipitation, see Budyko, 1974) is in some ways, a more representative index of the 

operating climate regime. Figure 5c shows the global distribution of AGCM biases 

in dryness index. 

The sensitivity of evaporation efficiency to soil moisture (the slope c) derived 
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from the biased forcing experiment is shown in Figure 4b. Figure 4c shows the global 

distribution of the differences in the slopes obtained from the two experiments - the 

change in the sensitivity induced by biased atmospheric forcings. The forcing biases 

have clearly caused slope changes throughout the globe. Why do the slope differences 

occur where they do in Figure 4c? To a large extent, the plotted differences in the 

figure are consistent with the dryness index biases shown in Figure 5c: higher c 

values tend to be found in regions where the climate regime has shifted to a drier 

climate (e.g., in the central United States and southeast Asia). Figure 6 shows the 

underlying relationships more clearly. Plotted in the figure are bin curves showing, 

for different soil moisture levels, how differences in the slope c relate to  biases in 

forcing, as characterized by bias-induced differences in dryness index. (Note that 

a fair amount of scatter is hidden by the binning process.) For relatively high soil 

moisture (average degree of saturation, w, greater than 0.4), a decrease in dryness 

index, which tends to make the soil even wetter, has little effect on c. In essence, 

for high moisture contents, atmospheric demand controls the evaporation, meaning 

that the slope is already close to zero; biases that make the soil even wetter keep it 

at  zero. An incmuse in the dryness index, however, dries the soil and thus brings 

evaporation into the soil-controlled regime, inducing a positive slope. Thus, for 

wet soils experiencing an increase in dryness index, the slope differences in Figure 

6 are positive. The reverse logic applies for dry soils (w less than 0.2): climate 

biases induce a large reduction in slope only when they make the soil moisture 

much wetter through a decrease in dryness index, pushing evaporation into the 

atmosphere-controlled regime. 

As discussed in later sections, these slope biases can have important implications 
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for soil moisture memory and land-atmosphere feedback characteristics in the GCM. 

In some areas, the slope biases are indeed large enough to force the regions alto- 

gether into the wrong evaporative regime. For discussion purposes, assume that the 

slope c=1.0 serves as the transition point between climates with evaporation rates 

controlled by soil moisture supply (dry climates) and those with rates controlled by 

atmospheric demand (wet climates). The choice of this arbitrary (but representative 

- other choices in the neighborhood of c=l would give similar patterns) value allows 

us to determine, through a comparison of the slopes obtained in the two experi- 

ments, where the biases in the coupled modeling system (in the AGCM) lead to an 

improper shift from one evaporative regime to the other (at least in the context of 

the modeling system used). Figure 4d shows in red those regions that are incorrectly 

treated as soil moisture controlled regions in the GCM. Similarly, the blue areas in 

the figure are where the GCM incorrectly controls evaporation through atmospheric 

demand. We emphasize, however, that a full regime shift is not necessary for the 

slope bias t o  have an important impact on the predictability elements. 

4 Memory Analysis 

Here we examine how a bias in the evaporation sensitivity slope can effect the 

simulated soil moisture memory. Koster and Suarez (2001) and Mahanama and 

Koster (2003) showed that simulated soil moisture memory can be well approximated 

with the equation: 
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where n is the month of the year, w is the soil wetness, Cs is the column’s water 

holding capacity, and E are the accumulated net radiation and precipitation 

during the month, c is the slope of the evaporation efficiency versus soil moisture 

relationship, a is the slope of the runoff efficiency versus soil moisture relationship, 

and Fn is a particular combination of forcing and model parameters. Equation 1 is, in 

essence, a generalization of the memory equation devised by Delworth and Manabe 

(1988); it implies that the memory is controlled by four aspects of the system: 

(a) the seasonality of the atmospheric forcing, (b) the sensitivity of evaporation to 

soil moisture, (c) the sensitivity of runoff to soil moisture, and (d) persistence in 

atmospheric forcing, as perhaps induced through land-atmosphere feedback. The 

”explicit” form of this semi-explicit equation, 

is less numerically dependable but shows a little more clearly the relationship be- 

tween soil moisture memory and evaporative regime, as characterized by the slope 

c. Simply put, as the slope c increases - as evaporation becomes more sensitive to 

soil moisture - soil moisture memory decreases. 
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Biases in c associated with GCM climate biases should thus produce biases in 

memory. Is this seen in the results? Figure 7a shows the global distribution of one- 

month lagged autocorrelation in soil moisture as produced from the offline simulation 

using the OBS forcings. (These are the actual autocorrelations, not those estimated 

with the equations above.) The corresponding field in Figure 7b was generated from 

the simulation using biased forcing. Figure 7c shows the differences between the 

two fields; it thus shows the biases in memory induced by the biases in the forcings. 

Soil moisture memory in the AGCM is apparently biased low (at least subject to 

the physics imposed in the LSM) in the Great Plains and Pacific Northwest of the 

United States, around the Bay of Bengal, and across a thin zonal band in Central 

Asia. The memory is biased high in eastern Asia and in parts of the Sahel. 

A comparison of Figures 7c and 4c is suggestive - memory tends to be biased 

low in areas where the slope c is biased high. This is quantitatively demonstrated 

with the scatter plot in Figure 8, in which bias in autocorrelation is plotted against 

bias in c.  Although the scatter is large (r2 = 0.24), the underlying relationship is 

clear and statistically significant - soil moisture memory tends to increase when the 

slope c decreases. 

The impact of the GCM climate biases on the simulated soil moisture memory 

is now analyzed to isolate the impact of each component forcing. Three supple- 

mental offline global simulations were performed with the Mosaic LSM to determine 

the impact of (1) biased downward shortwave radiation alone, (2) biased down- 

ward longwave radiation alone, and (3) biased precipitation alone on soil moisture 

memory. 

Global fields of soil moisture memory were computed using the JJA simulations 
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these supplemental experiments, and each memory field was compared to 

that produced with the unbiased OBS forcing. The resulting biases in soil moisture 

memory are plotted side-by-side with biases in c values for each of the supplemental 

experiments (Fig. 9). Comparison of the panels on the left-hand side in Figure 9 

(a, c, and e) shows that the GCM precipitation biases are responsible for most of 

the biases in simulated memory. Similarly, the panels on the right-hand side of the 

figure show that the biased precipitation causes most of the bias in the operating 

evaporation regime. A comparison of Fig. 9f and Fig. 5a (GCM precipitation bias) 

further underscores how an excessive precipitation can force the evaporation system 

into a more atmosphere controlled regime. 

We note in addition that changes in runoff efficiency could also impact the mem-' 

ory, as indicated by equations 1 and 2. Because the emphasis of this paper is on 

the sensitivity of evaporation to soil moisture, we do not elaborate the runoff effects 

here. 

5 Analysis of Atmospheric Response 

In the previous section, we discussed the impact of GCM climate biases on simulated 

soil moisture memory. Characterizing the impact of the biases on precipitation's 

responsiveness to  soil moisture anomalies is also of interest - for a soil moisture 

initialization to provide skill to a seasonal precipitation forecast, both soil moisture 

memory and precipitation responsiveness are needed. Here, since offline simulations 

are used to characterize evaporation regime biases, their impacts on precipitation 

responsiveness are examined indirectly. 

Using a 50-year observational precipitation data set covering the United States, Koster 
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et al., (2003) found indirect evidence of land-atmosphere feedback in nature, i.e., 

evidence that soil moisture anomalies affect precipitation. Here, we reproduce from 

that study the autocorrelation in time of precipitation (between twice removed pen- 

tad totals - e.g. correlation between precipitation amounts in 1-5 and 11-15 July, 

between those in 6-10 and 16-20 July and so on.) for the AGCM in July (Figure loa) 

and for observations in July (Figure lob). The autocorrelations are an indication of 

feedback (see Koster et al. 2003, for details). Differences in precipitation autocorre- 

lation (AGCM minus observed) are plotted in Figure 1Oc. The AGCM precipitation 

correlations are clearly excessive over much of the United States, indicating that the 

simulated feedback is too strong. Nevertheless, the presence of autocorrelations in 

the observations does suggest some real-world feedback. 

Koster and Suarez, (2003) identified three main factors controlling the response 

of precipitation to  soil moisture anomalies: (1) the size of the soil moisture anomaly, 

(2) the product of the mean net radiation (ket) and the slope of the evaporation 

efficiency versus soil moisture relationship ( c) and (3) the convective fraction. Ac- 

cording to  Koster and Suarez, (2003) each of these factors must be sufficiently large 

for land-atmosphere feedback to occur. The second factor, of course, is directly 

related to the evaporative regime. 

Figure 10d shows the bias induced differences in the slope c (i.e. in the evap- 

orative regime) over the United States (zoomed-in from Figure 4c). Comparing 

Figs.(lOc) and (10d) shows that the region where feedback is excessive largely over- 

laps the region where the slope c is excessive - i.e. the region where, according to 

the arguments of Koster and Suarez (2003), the feedback should indeed be exces- 

sive. The comparison of Figures 1Oc and 10d does not, of course, constitute proof 
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that AGCM climate biases in the central United States lead to excessive feedback 

there. The feedback could be too large, for example, because of the convection and 

boundary layer parameterizations employed in the model. Still, given the findings 

of Koster and Suarez (2003), a correction of the climate biases in the central United 

States should adjust the feedback strength in the proper direction. 

6 Discussion and Summary 

In this paper, we investigated the impact of AGCM climate biases on the sensitivity 

of evaporation to soil moisture. We then examined how bias in the evaporation 

sensitivity can in turn affect soil moisture memory and land-atmosphere feedback. 

Our experiments were performed of3ine for a very simple reason: we needed 

to characterize the evaporation sensitivity under unbiased climatic forcing, which 

is next to impossible to achieve in a free-running coupled simulation. Arguably, 

the offline nature of the experiments limits our analysis. It certainly limits our 

examination in section 5 of precipitation response to soil moisture variations, for 

while a positive evaporation anomaly may induce a positive precipitation anomaly 

through land-atmosphere feedback, as assumed in the analysis, it can conceivably, 

under some conditions, increase atmospheric stability and thus cause a decrease in 

precipitation. An offline simulation cannot, of course, predict the direction of the 

impact. Still, any predictuble impact (positive or negative) of soil moisture on pre- 

cipitation in a seasonal forecast system will depend on how sensitive evaporation, as 

a proxy for the full energy balance, is to variations in soil moisture, and quantifying 

this sensitivity and its bias is the key focus of this paper. Note that the offline 

framework is fully adequate for our analysis of the impacts of climate bias on soil 
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moisture memory, a key element of land-atmosphere interaction. 

Given the complexity of the interwoven physical processes being modeled, climate 

biases will be found in any modeling system. Those examined here, from a specific 

climate model, are representative. We do not attempt here to identify the sources of 

the climate biases. The biases have many sources; indeed, biases in precipitation and 

radiation can be induced by the land model itself through land-atmosphere feedback. 

The land model used has been tested offline in a series of experiments under the 

Project for the Intercomparison of Land surface Parameterization Schemes (PILPS) 

(e.g., Chen et al., 1997, Wood et al., 1998, Liang et al., 1998); its own biases are 

representative of LSMs in general. 

Throughout this paper, the sensitivity of evaporation efficiency to soil moisture 

in an LSM is characterized with the slope c, an empirically fitted quantity computed 

at  each land element using output from extensive model simulations. Figure 4c in 

section ( 3) demonstrates that existing AGCM biases affect the slope c and thus 

the operating evaporative regime in varying degrees. Figure 4d shows that in some 

regions of the globe, the climate biases fully shift the evaporative regime from being 

atmosphere-controlled to soil-moisture controlled or vice-versa. Figures 5c and 6 

show that the geographical variations in the biases of the slope c are determined in 

large part by the geographical variations in the dryness index bias, defined in large 

part by the precipitation and downwelling radiation biases in the model. 

The connection between biases in evaporative regime and simulated soil moisture 

memory was explored in section ( 4). Figure 8 shows that, in general, a reduction in 

evaporation sensitivity (i.e., in the slope c) leads to  an increase in soil moisture mem- 

ory, as expected from the analytical treatment of Koster and Suarez (2001). The 
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biases in soil moisture memory have important implications for seasonal precipita- 

tion forecasts in a coupled modeling system. An overly low soil moisture memory, 

for example, will improperly limit the effectiveness of the soil moisture initialization. 

The impact of biases in evaporative regime on the responsiveness of precipitation 

to soil moisture anomalies was explored in section ( 5). Figure 10 shows a connection 

between excessive land-atmosphere interaction in the AGCM examined and a bias- 

induced excess in the slope c. Elimination of climate biases in the central United 

States should reduce the excessive feedback, though perhaps not eliminate it. 

Forcing the LSM globally of3ine in this analysis is computstionally much less 

expensive than employing the full atmospheric GCM, yet it still allows us to  emulate 

land surface processes as they would occur in the coupled system. The approach 

used here can be used by any atmospheric GCM group to examine inexpensively 

the impacts of their own biases on forecast skill. Ongoing efforts, such as the Global 

Soil Wetness Project (Dirmeyer et al., 2000), the Global Land Data Assimilation 

System (Rodell et al. 2004), and the Land Information System (LIS), in which 

numerous LSMs are run offline globally with atmospheric forcings, could provide 

the framework for enhanced explorations of the impact of AGCM biases on the 

elements of prediction. 
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Figure Captions 

Figure 1: Evaporation efficiency versus the degree of saturation of soil moisture for 

four different vegetation biomes. The daily values from each idealized, 10,000-month 

perpetual July experiment have been binned. 

Figure 2: Soil moisture statistics for a representative AGCM grid cell overlaid 

on the bottom right panel of Figure 1. The solid vertical line shows a mean soil 

moisture wetness of 0.45 for this grid cell, while the dashed lines delimit a range 

standard deviation of soil moisture there. The sloping dashed line shows that a linear 

relationship can approximate the soil moisture-evaporation relationship within the 

cell. 

Figure 3: Schematic showing the potential impact of climate biases on the sen- 

sitivity of evaporation efficiency to soil moisture. 

Figure 4: (a) Global map of the slope c based on the offline simulation using 

OBS forcings (b) Same, but for the  offline simulation using biased GCM forcings, 

(c) Differences: c from biased forcings minus c from OBS forcings, (d) regions where 

biases induce an overall shift in evaporation regime, assuming transition c value of 

1.0. - Blue: indicates a transition to an atmosphere controlled regime, and red 

indicates a transition to a soil moisture controlled regime. 

Figure 5: (top) AGCM biases in mean precipitation (JJA, in mm/day). (middle) 

AGCM biases in the sum of downward shortwave and downward longwave radiation 

(JJA, in W/m2), (bottom) GCM biases in dryness index (het/XP, where X is the 

latent heat of vaporization). 

Figure 6: Differences in the slope c versus biases in forcings (as characterized by 

biases in dryness index) for different soil moisture levels: lines were plotted through 
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simple binning. 

Figure 7: (a) One-month-lagged autocorrelations of soil moisture, p, as obtained 

from the offline simulation with OBS forcings, (b) Same, but as obtained with the 

offline simulation using the biased forcings, (c) Differences: resulting biases in the 

one-month-lagged autocorrelation of soil moisture. 

Figure 8: Scatter plot showing how biases in the slope c relate to biases in the 

one-month-lagged autocorrelations of soil moisture (p )  . 

Figure 9: The impact of each component forcing bias on soil moisture memory 

( p ) .  (a) Differences in p due to biased AGCM shortwave radiation, (b) Differences 

in the slope c due to  biased AGCM shortwave radiation, (c) and (d) Same, but 

for biased AGCM downward longwave radiation, (e) and (f) Same, but for biased 

AGCM precipitation. 

Figure 10: (a) Correlations between twice-removed pentad precipitation, as pro- 

duced by the AGCM in July (from Koster et al, 2003), (b) Same, but for observa- 

tional precipitation data (from Koster et al, 2003), (c) Differences in precipitation 

correlations : (a) minus (b), (d) Differences in slope c between the experiments with 

biased GCM and OBS forcings. 



27 

Figure List 



28 

G 
? 4 0.8 
a 

EVERGREEN BROADLEAF 

- 

2 1.0 , ' I ' ' ' I ' ' ' ' ' ' ' ' , ' ' - 

G a 

0.0 0.2 0.4 0.6 0.8 1.0 
DEGREE OF SATURATION OF SOIL MOISTURE 

6 
Z w 
0 
LL 
LL 
w 
Z 
P z e 
5 
W 

1: 



29 

Figure 2: 



30 

Figure 3: 



31 

3 

8 

3 
f 

3 
3 u 

5 .. u 

0 - 
Q 

- 6  W 

- 6  
2 

0 
E 

w 
0 
N 
c 

W 
8 

0 

6 

2 

W 

2 

w 
0 
c! 

w 
8 

0 

z 
z 
W 

N - 
D I 

Figure 4: 



32 

(a) PRECIPITATION BIAS: AGCM - OBS (mm/day) 
I 10.0 

60N 

30N 

EQ 

30s 

60s 

90s 
120w 60W 0 60E 120E 180 

90N 

60N 

30N 

EQ 

30s 

60s 

90s 
12ow 60W 0 WE 120E 180 

(c) BIASES IN DRYNESS INDEX 
M L I  I 

60N 

30N 

EQ 

305 

60s 

90s 
12ow 60W 0 60E 120E 180 

Figure 5: 



33 

2 

0.0 e soil hoistuie 4 0.b ' ' ' I ' ' ' I ' ' ' I 3 - n t z  1 , ' '  

I ._________._. .  0.2 e soil moisture e 0.4 

L - - - - - 0.4 e soil moisture e 0.6 - 
- 

W 

3 
2 
0 '  
z 
W 
0 z 
W 
LL 

E o  
u. n 

-1 

-2 # A  b ! a  I 1  I I ,  I I , ,  , I , ,  , I , ,  , 
-6 -4 -2 0 2 4 6 

DIFFERENCE IN DRYNESS INDEX 

Figure 6: 



34 

1 0  

0 9  

(a) ONE-MONTH-LAGGED p (JJA) with OBS FORClNGS 
90N 

60N 0 8  

0 7  

0 6  

0 5  

0 4  

0.3 

0 2  

30N 

EQ 

305 

60s 
0 1  

90s 0 0  
120w 60W 0 WE 120E 180 

, I 1.0 
(b) ONE-MONTH-LAGGED p (JJA) with BIASED GCM FORCING 

nn., , 
Y U l Y  

60N 

30N 

30s 

60s 

90s 00 
120w 60W 0 60E 120E 180 

, I 1.0 
(c) DIFFERENCE IN p (JJA): BIASED GCM - OBS 

nn., . 
Y U l Y  

0 8  

WN 0.6 

0 3  

0 1  

0 0  

-01 

-03 

-0 6 

30N 

EQ 

305 

R n c  

120w 60W 0 60E 120E 180 

Figure 7: 



7 

I . i. 

F?2= 0.235390 

BIAS IN p (Biased forcings minus OBS forcings) 

35 

Figure 8: 



fa) DIFFERENCE IN P (JJA): BIASED GCM SWDown - 06s 

36 

(b\ DIFFERENCE IN C VALUE: BIASED GCM SWDown - OBS 
1 0  . ,  

90N 
0 8  

60N 0 6  

03 

30N 
0 1  

0 0  EQ 

0 1  

0 3  30s 

0 6  

60s 

90s I:: 
120W 60W 0 60E 120E 180 

(c) DIFFERENCE IN p (JJA): BIASED GCM LWDown - 01 

60N 

30N 

60s 

90s 
120W 60W 0 60E 120E 1t 

(e) DIFFERENCE IN p (JJA): BIASED GCM Prec- OBS 
90N 

60N 

30N 

EQ 

30s 

60s 

90s 

601 \ ,  

90N 

la 

0 4  60N 

o a  
30N 

O W  

oa EQ 

0 C  

0 :  30s 

60s 

120W 60W 0 60E 120E 180 

(dl DIFFERENCE IN C VALUE: BIASED GCM LWDown - C . ,  
90N 

8 

60N 
16 

13 
30N 

I 1  

10 EQ 

0 1  

30s 
03 

0 6  
60s 

08 

1 0  90s 

a 

U 

14 

la 

lo! 

la  

o c  

0: 

01 

1 c  

6 C  

120W 60W 0 60E 120E 180 

(9 DIFFERENCE IN C VALUE: BIASED GCM Prec - OBS 
90N I I 1601 _ _  

04 60N 

oa 
30N 

Oo(  

EO 

0 C  

4: 30s 

12OW 60W 0 60E 120E 180 

Figui 

60s 

90s I:: 
120W 60W 0 60E 120E 180 

*e 9: 



Figure 10: 



Popular Summary: 

“AGCM Biases in Evaporative Regime”, by S. Mahanama and R. Koster. (Journal 
of Hydrometeorology) 

Climate models, complex as they are, retain unwanted biases relative to observa- 
tions. These biases may limit the models’ ability to provide useful information about 
the Earth’s climate system. In the present paper, we analyze how such biases limit 
a climate model’s ability to translate initial soil moisture information into skill in 
precipitation prediction. Two sets of offline land model simulations, one with unbi- 
ased atmospheric forcing and one with biased forcing mimicking that of a climate 
model, are analyzed side by side. The biases affect soil moisture “memory” and the 
sensitivity of evaporation to soil moisture changes in ways that would indeed affect 
precipitation prediction skill in a full climate model. 
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